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ABSTRACT 

Temperature is the most common physical 
variable that needs to be measured for the 
efficient and safe operation of industrial 
processes. Some of these applications present 
particularly severe measurement conditions, such 
as in fluidized bed coal combustion in which 
temperatures exceed 1000 ºC and the medium is 
highly abrasive and corrosive. Under these 
conditions protecting devices must be adopted to 
preserve the integrity of transmitters in contact 
with such a harsh medium. The objective of this 
work is to contribute in the development of an 
intelligent temperature sensor capable of 
autonomously compensating these side effects 
and of reconstructing the actual process 
temperature through numerical solution of the 
inverse measurement problem. Considering a 
thermocouple exchanging heat through 
convection and conduction a linear differential 
equation can be written relating the indicated and 
the process temperatures. A discrete version of 
this equation, obtained by the finite differences 
method, allows to explicit the indicated in terms 
of the process temperature or the process in terms 
of the indicated temperature. Although the 
approach is feasible in mathematical terms, 
solving the inverse problem implies that 
experimental errors and noise embedded in the 
indicated temperature will be tremendously 
amplified to the point of completely corrupting 
the reconstructed process temperature. A 
regularizing technique, based on the adjustment 
of a polynomial curve on the last few indicated 
temperature points, is proposed to overcome this 
problem. Numerical and experimental results 
show that this technique allows the reconstruction 
of the process temperature under realistic 
experimental conditions at relatively high noise 
and error levels. 

 
NOMENCLATURE   

 ai – polynomial coefficients 
 A (m2) – area 
 Ai – coefficient of the first line in G-1 

 Bi – coefficient of the second line in G-1 
 C – specific heat 
 G – Gram’s matrix 
 G-1 –  inverse of Gram’s matrix 
 h – convection coefficient  
 M (kg) – mass 
 t – time 
 Tind – indicated temperature 

indT
r

 – indicated temperature vector 
 Tproc – instantaneous process temperature 
 W – weight 
 w
r

 – weight vector 
 xi – unknown  
 x
r

– unknown vector 
 t∆  – timestep 

 τ  – time constant 
 avgτ  – average time constant  
 M – number of points  
 N – polynomial order 

 
INTRODUCTION 

Gas bubbling fluidized beds are used in the 
industry for a variety of purposes, such as the 
catalytic cracking of hydrocarbons and the 
combustion of coals. A gas bubbling fluidized bed 
may be regarded as a mixture comprised of two 
phases, a bubble phase and a particulate or 
emulsion phase. Bubbles are dispersed within the 
continuous emulsion phase and are formed as the 
fluidizing gas is injected at the bottom of the bed. 
They move upwards dragging wakes of 
particulate and may coalesce into larger bubbles, 
split and recoalesce. These intricate and 
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interdependent phenomena result in an extremely 
complex gas-solid flow dynamics, characterized 
by high reaction and heat transfer rates. A 
complete understanding of such phenomena is of 
crucial importance, not only for the correct design 
of fluidized bed reactors, but also for their 
efficient and safe operation. 

The properties and evolution of bubbles in gas 
fluidized beds are investigated using either 
intrusive or non-intrusive measuring techniques. 
Measurements through capacitive and 
electroresistive external probes, optical and X ray 
observations through photography and filming, 
with or without the use of gas tracers, are among 
the most common non-intrusive methods. These 
methods, even though not disturbing the process, 
are either limited to small beds or allow 
observations only near to the confining walls. 
Intrusive techniques are based on phase detection 
probes for measuring local physical properties. 
The majority of commonly used probes are 
thermal, capacitive, optical, differential pressure, 
and electroresistive. Regardless of disturbing the 
process to some extent, intrusive probes are 
applicable to beds of any size and constitute the 
most adequate choice in large scale industrials 
systems.  

The main problem involved in probing gas-
solid flows in fluidized bed reactors concerns the 
extremely harsh experimental environment in 
which the probe is immersed: temperatures 
exceeding 1000 ºC, material deterioration due to 
friction with the fluidized particulate, chemical 
corrosion, presence of electrostatic charges, etc. 
Thermal probes are an interesting option to work 
in such conditions because of its low cost and 
intrinsic robustness. The measurement principle is 
based on the temperature difference between the 
reacting emulsion phase (burning coal particles 
for instance) and the gas bubbles phase 
constituted of the exceeding injected gas. The 
signals delivered by such thermal probes tend to 
concentrate on characteristic levels and can be 
used to extract residence times, pierced lengths, 
bubble diameters, etc.  

There is, however, significant limitations 
concerning the possibility of obtaining some of 
these physical description parameters. For 
instance, previous works account for the problem 
of determining a bubble diameters histogram from 
the corresponding measured pierced lengths 
histogram, which implies in solving an extremely 
ill-conditioned integral equation. The 
consequence of this is that negligible 

experimental errors may be amplified to the point 
of completely corrupting the reconstructed 
histogram. Also, any distortion on the measured 
signals, even at favorable signal to noise ratios, 
may seriously compromise the significance of the 
results. Since experimental errors and 
measurement distortions are unavoidable, special 
signal processing techniques must be applied to 
manage such problems in order to obtain 
acceptable results [1]. 

This work is focused on the problem of 
developing a numerical signal processing 
technique capable of reconstructing the original 
process temperature signal from its distorted 
measured signal obtained from the probe. In the 
case of thermal probes employed in fluidized bed 
reactors, such distortions are caused mainly by 
non-linear effects and delays due to insulation of 
the temperature sensor (a sheathed thermocouple 
for instance). The proposed method is based on 
deconvolving the measured signal through an 
inverse numerical model of the transduction 
equation to obtain the process signal. This 
approach is suitable for on-line implementation 
and allows the development of an intelligent 
micro-processed thermal sensor that 
autonomously corrects distortion effects.  

Numerical and experimental tests were carried 
out aiming at validating the proposed method. 
Different regularization techniques, based on data 
smoothing, were numerically tested in order to 
determine the best tradeoff between 
computational effort and the ability to handle 
higher measurement noise levels. The optimized 
reconstruction algorithm was tested with signals 
obtained from a sheathed thermocouple immersed 
sequentially in cold and hot water to reproduce 
the effect of gas bubbles in a reacting emulsion. 
Results show that the true process temperature 
can be readily reconstructed with some increase 
in the original noise levels.  
 
FORMULATION OF THE PROBLEM AND 
RECONSTRUCTION ALGORITHM 

Consider a sheathed thermal probe immersed 
in a reacting two-phase flow as indicated in the 
following figure. The local instantaneous 
temperature of the flow and the corresponding 
indicated temperature will be respectively 
denoted by Tproc and Tind. They differ because of 
the thermal resistance associated with heat 
convection on the external surface of the sensor 
and due to thermal accumulation by the material 
of the sheath.  
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Figure 1 – Use of a temperature sensor to detect 
phases in a reacting gas-solid flow 

 
Convection is characterized by the convection 

coefficient h (kW/m2/K) and by the external 
surface A (m2), while thermal accumulation is 
described by the sheath’s mass M (kg) and 
specific heat C (kJ/kg/K). Thus, neglecting 
radiation effects and heat conduction through the 
sensor’s cable, the governing equation can be 
written as follows: 

0)TT(
dt

dT
)TT(Ah

dt
dT

CM indproc
ind

indproc
ind =−−τ=−−  

...(1) 

where )hA/(MC=τ  is the probe’s time constant. 
This equation expresses the transduction relation 
between the input or process variable and the 
output or indicated variable. Solving the so-called 
direct problem, i.e. calculating the output (Tind) 
from the known input (Tproc), can be done in a 
very straightforward manner. However, solving 
the corresponding inverse problem is certainly a 
difficult task because of its intrinsic ill-
conditioned nature. In other words the calculus of 
Tproc from Tind is strongly affected by the presence 
of experimental errors in the measurements of 
Tind. This effect has already been studied and 
some solution techniques have been proposed 
such as J.V. Beck’s function specification method 
[7] and D. Murio’s mollification method [8]. 
However, the numerical instructions associated 
with such methods are excessively long for their 
implementation in a few Kbytes in dedicated 
microcontroller.  

A convenient approach to this constraint is 
based on a finite difference version of equation 
(1), that is: 

( ) 0)TT(TT
t n,indn,proc1n,indn,ind =−−−

∆
τ

−  (2) 

in which t∆  denotes an adequate time 
discretization step, and the second indices n or n-
1 that the variable refers to the times tnt ∆=  or 

t)1n(t ∆−=  respectively. Thus the direct and 
inverse problems are expressed by: 

)TTt(
t

1
T 1n,indn,procn,ind −τ+∆

∆+τ
=  (3) 

( )1n,indn,indn,indn,proc TT
t

TT −−
∆
τ

+=   (4) 

A numerical experiment is effective to 
demonstrate the corresponding sensitivities to the 
presence of noise. Consider a process whose 
temperature originally varies according to a 
square wave from 90 to 100 oC, a thermal probe 
with a time constant of s1=τ  and a time step of 

s01.0t =∆ . The direct problem is solved 
(equation (3)) with random noise (< 0.02 oC) 
added to Tproc and the resulting Tind is shown in 
Figure 2 (top). The inverse problem (equation (4)) 
is solved with the same noise signal added to Tind 
and the calculated Tproc is shown in Figure 2 
(bottom). It can be seen that the inverse problem 
shows to be extremely sensitive, even for very 
small errors of less than 0.02 oC over an average 
temperature signal of 95 oC.  
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Figure 2 – direct and inverse problems (equations 
(3) on top and (4) on bottom respectively) solved 
with random noise (< 0.02 oC) added to the input 
temperature (blue trace represents Tproc and black 
trace denotes Tind) 
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These problems has been the object of study 
of several researches in the past and, as a result of 
their efforts, several a posteriori methods are 
available to reconstruct the process temperature in 
realistic conditions. Tikhonov’s method proposed 
in 1983 [2] is certainly a classic choice and is 
based on the introduction of regularizing terms 
into the inversion process. The main disadvantage 
of Tikhonov’s method is that to work properly 
these regularizing terms must be weighted by 
specific coefficients which must be determined 
previously and are situation-dependent [3]. 
Another interesting a posteriori approach is the 
Van-Cittert iterative deconvolution technique, 
based on forming successive approximations of 
the unknown systems impulse response using the 
convolution equation [4] [5]. This technique 
works remarkably well but is restricted to linear 
systems and is not suited for on-line processing. 
Adaptive filtering by wavelets [1] and redundant 
measurements [6] can also be employed in non-
linear problems with good results but still 
restricted to a posteriori applications.  

The on-line reconstruction of the process 
temperature (Tproc) must be based on a finite 
number simple operations performed on the last 
few acquired temperatures. This is so because of 
limitations in the present microcontroller 
technology which, although its astonishing 
developments in the last few years, are still far 
beneath the computational power necessary to 
solve such types of inverse problems by classical 
methods. For instance, a very widespread option 
is Microchip’s model 18F252 which has a 
memory of 32 Kbytes for the instructions and 1.5 
Kbytes for the data. The approach adopted in this 
work is based on a smoothing technique for the 
calculation of the derivative in equation (1). More 
precisely, this derivative performs like a high-
pass filter and, consequently, low-frequency 
components present in the original indicated 
temperature the signal are attenuated, while high 
frequency components mainly contained in the 
noise signal are amplified. The smoothed 
derivative is determined by fitting a polynomial 
of order N to the last M+1 points, as indicated in 
Figure 3.  
 

last M+1 pointsTind,n

n (time)

measured temperatures

adjusted polynomial
(order N)

x  
 
Figure 3 – Tind and dTind/dt in (1) are estimated 
through an adjusted polynomial over the last M+1 
temperature points 
 

In mathematical terms this can be expressed 
as: 

NN1100ind xa...xaxaT
rrrr

+++=  (5) 

where 

























=

























=

























=

























=

−

−

−

N

N

N

N

N

1

1

1

1

1

0

0

0

0

0

Mn,ind

2n,ind

1n,ind

n,ind

ind

M

2

1

0

x...,

M

2

1

0

x,

M

2

1

0

x,

T

T

T

T

T
M

r

M

r

M

r

M

r
 

...(6) 

and the coefficients ( ai ) being determined 
according to some error minimization scheme. 
The weighted residual (or weighted least square) 
technique was adopted in this work. The main 
reason for this choice is the possibility of defining 
different weighting vectors )w(w i=

r
 to 

emphasize different parts of the indicated 
temperature signal, producing different 
coefficients sets according to specific needs. This 
approach leads to the following equations: 
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where G is the associated Gram’s matrix  
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which inner product is defined as  

∑
=

=
M

0k
kkk yxw)y,x(

rr
 (9) 

The main advantage of this approach is that 
the Gram’s matrix in equation (7) can be 
previously inverted because it depends only on 
w
r

and on the number of fitted temperature points 
(M+1). Furthermore, these operations need not to 
be fully implemented since only Tind,n and its first 
derivative are needed at x = 0 to replace in (1). 
According to (5) these values can be calculated as 
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from what equation (4) becomes 

n,1n,0n,proc aaT τ+=  (11) 

where the index n was introduced to stress the 
fact that a0 and a1 refers to tnt ∆=  and must be 
recalculated for all time steps. Synthetically these 
operations can be summarized in the following 
steps 

1. set M, N and w
r

 

2. calculate G-1 in (7) and extract the first 
and second lines, i.e. 

( ) ( ) 1row
1

N10 GA,...,A,A =
−=  (12.1) 

and 

( ) ( ) 2row
1

N10 GB,...,B,B =
−=  (12.2) 

3. initiate the temporal loop with adequate 
values for Tind,n, Tind,n-1, ... Tind,n-M 

4. calculate a0 and a1 through the formulas 
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5. calculate Tproc,n through equation (10) 

6. make n = n+1, acquire a new indicated 

temperature and scroll values in indT
r

; 
that is 

new,indn,ind

n,ind1n,ind

2Mn,ind1Mn,ind

1Mn,indMn,ind

TT

TT

TT

TT

=

=

=

=

−

+−+−

+−−

M  (14) 

7. iterate from step 4. 

 
VALIDATION OF THE PROPOSED 
RECONSTRUCTION ALGORITHM 

An experimental test was conceived to 
validate the proposed reconstruction algorithm 
under realistic conditions. The test consisted in 
immersing a sheathed thermocouple in hot 
(93.081 oC) and cold (-0.099 oC) water repeatedly 
to simulate a process in which the temperature 
varies according with a square wave. The 
thermocouple’s time constant was previously 
determined in a series of step input tests and 
resulted in s04.13avg =τ . An unsheathed 
thermocouple was used to obtain the 
instantaneous process temperature to be 
reconstructed from the indicated temperature.  
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A 24-bit data acquisition board (PXI-4351) 
was used to digitize the measured temperatures 
with a resolution of the maximum of 0.05 oC. The 
acquisition frequency was set at 30 Hz to avoid 
aliasing effects and to be sure to correctly capture 
the edges of the process signal. The 
reconstruction algorithm detailed in the preceding 
section was implemented in LabView on a PC 
platform (National Instruments PXI-8170 pentium 
III 850 MHz). After an initial time interval 
necessary for all transients vanish, the 
reconstruction is performed on-line at the same 
rate that the measurements are acquired. Figure 4 
shows the instantaneous process temperature 
obtained from the unsheathed thermocouple, the 
indicated temperature given by the sheathed 
thermocouple and the corresponding 
reconstructed temperature.  

Although some over and undershooting, it is 
clear from Figure 4 that the reconstructed 
temperature is considerably close to the true 
process temperature.  

 

The performance of the reconstruction 
algorithm depends strongly on intrinsic 
parameters such as the polynomial order (N) in 
equation (5) and on the number of temperature 
points on which the polynomial is being adjusted 
(M+1). The weighting vector w

r
 also has a 

significant overall influence. To assess these 
influences we adopted )tkexp(wk ∆−= , after 
which the following error quantifier can be 
defined: 

M

)TT(
e

M

0

2
n,truen,proc∑ −

=  (15) 

where Tproc,n are the reconstructed process 
temperature obtained from (11) and Ttrue,n are the 
true process temperature given by the unsheathed 
thermocouple. The following table shows the 
evolution of this error. 
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Figure 4 – experimental true process and indicated temperatures and the corresponding 
reconstructed process temperature (equation (11)). 
 
Table 1 – averaged error between the true and the reconstructed process temperature 
according to equation (15) in oC. (weighting vector: e-t) 

2 3 4 5 6 7 8 9 10
3 16.351

4 16.385 17.346

5 16.756 16.352 20.136

6 17.135 16.102 17.899 25.541

7 17.447 16.072 17.037 21.108 35.534

8 17.680 16.123 16.606 19.319 26.978 53.659

9 17.841 16.200 16.368 18.358 23.468 37.547 86.084

10 17.946 16.276 16.232 17.769 21.572 30.815 56.347 143.809

11 18.011 16.344 16.150 17.385 20.395 27.175 43.729 89.478 246.487

12 18.048 16.398 16.103 17.114 19.615 24.911 36.888 66.233 147.677

13 18.070 16.438 16.077 16.919 19.063 23.403 32.642 53.606 105.267

14 18.081 16.466 16.063 16.776 18.655 22.340 29.804 45.800 82.234

15 18.087 16.485 16.056 16.669 18.346 21.558 27.802 40.587 68.063

20 18.093 16.513 16.050 16.427 17.558 19.606 23.113 29.309 40.628

30 18.093 16.515 16.050 16.370 17.263 18.708 20.893 24.258 29.578

40 18.093 16.515 16.050 16.369 17.256 18.650 20.633 23.432 27.476

50 18.093 16.515 16.050 16.369 17.256 18.649 20.626 23.381 27.229

polynomial order (N)number of points 
(M+1)
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CONCLUSIONS 
 
O procedure for reconstructing the true process 
temperature from measured indicate temperatures 
has been proposed in this work. The algorithm is 
based on inverting a discrete model of the 
transduction equation, followed by a 
regularization procedure since the inverse 
problem is intrinsically ill-conditioned. The 
regularization is achieved by fitting a polynomial 
over the last few measured indicated temperatures 
and by correcting the present temperature and 
estimating its temporal derivative through the 
coefficients of the polynomial. This procedure is 
suitable for on-line implementation due to the 
reduced number of mathematical operations 
associated. Numerical and experimental testes 
were carried out in order to validate the proposed 
procedure. Results show good agreement between 
the true process temperature, determined from an 
unsheathed thermocouple, and the reconstructed 
temperature obtained from equation (11). Future 
work should include a more extensive work on 
different weighting functions and additional 
procedures to minimize over and undershooting 
of the reconstructed signal. 
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